A tail inequality for quadratic forms of subgaussian random vectors

نویسندگان

  • Daniel J. Hsu
  • Sham M. Kakade
  • Tong Zhang
چکیده

This article proves an exponential probability tail inequality for positive semidefinite quadratic forms in a subgaussian random vector. The bound is analogous to one that holds when the vector has independent Gaussian entries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.

متن کامل

Analysis of a randomized approximation scheme for matrix multiplication

This note gives a simple analysis of a randomized approximation scheme for matrix multiplication proposed by [Sar06] based on a random rotation followed by uniform column sampling. The result follows from a matrix version of Bernstein’s inequality and a tail inequality for quadratic forms in subgaussian random vectors.

متن کامل

Sparse Hanson-Wright inequalities for subgaussian quadratic forms

In this paper, we provide a proof for the Hanson-Wright inequalities for sparse quadratic forms in subgaussian random variables. This provides useful concentration inequalities for sparse subgaussian random vectors in two ways. Let X = (X1, . . . , Xm) ∈ R be a random vector with independent subgaussian components, and ξ = (ξ1, . . . , ξm) ∈ {0, 1} be independent Bernoulli random variables. We ...

متن کامل

Lasso Guarantees for Time Series Estimation Under Subgaussian Tails and $ \beta $-Mixing

Many theoretical results on estimation of high dimensional time series require specifying an underlying data generating model (DGM). Instead, this paper relies only on (strict) stationarity and β-mixing condition to establish consistency of the Lasso when data comes from a β-mixing process with marginals having subgaussian tails. We establish non-asymptotic inequalities for estimation and predi...

متن کامل

Approximating the Distributions of Singular Quadratic Expressions and their Ratios

Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1110.2842  شماره 

صفحات  -

تاریخ انتشار 2011